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Abstract. The range of validity of Landau freeenergy potentials with the usual approximation 
of constam coefficients for terms higher than quadratic has recently been questioned (L Phys.: 
Condenr. Marter 1 (1989) 8327). The frequent observation in real systems, within large 
temperature intervals, clearly outside any possible critical region, of power laws of the type 
IC -TI" for the order parameter has also been pointed out as an indication that certain simple 
general features in phase transitions, not related at all ta critical phenomena, are beyond the 
usual approximations included in L Landau free-energy expansion. In particular, the value of 
the exponent h has been proposed to be related to the displacive and order-disorder degree of 
the system. In order to elucidate these questions, the temperature dependence of the Landau 
free energy corresponding to the three-dimensional O4 model has been investigated using a 
straightforward Monte Carlo method. Different model parameteis have been considered, ranging 
from typical displacive panmeters to those approaching a pure order-disorder system. Following 
its formal definition, the Landau free energy at each temperature has been directly derived 
from the order panmeter distribution in a Metropolis statistical sample. En ContriLCt with other 
numerical methods used in previous literature, no approximation is introduced in the calculation, 
except inherent to the numetical method employed. It is shown that the temperature dependence 
of the L m d u  potential coefficients follows smooth simple laws that are outside the usual 
assumptions in Landau theory and can be related to the order-disorder degree of the system. 
The quadratic coefficient in the Landau potential exhibits a linea tempelatUE dependence in 
large temperature intervals but shows a marked change in slope about the transition temperature. 
The quatic coefficient is shown to depend on tempentlrre as strongly as the quadratic coefficient 
having a minimum around the transition point. The strong temperature dependence of this quartic 
coefficieht is responsible for the 'non-classical' behaviour of the order panmeter, which wn be 
described by a power law. 

1. Introduction 

In the law few years, several questions on the limits of Landau theory for describing 
structural phase transitions outside the critical region have been raised. On the one hand, 
it has been pointed out that the order parameter of many compounds follows in extremely 
large temperature intervals power laws with the classical exponent 0.5 expected from mean- 
field theory or a Landau free energy restricted up to fourth-order terms 11-31, These 
temperature intervals, which in many cases are larger than 0.5 in reduced temperature units 
surpass any reasonable value that one would expect for a theory restricted in principle 
to the proximity of the transition. On the other hand, the temperature behaviour of the 
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order parameter in many other systems follows in equally large temperature intervals non- 
classical power laws with exponents close to 0.25-0.3 [1,4]. This is usually considered 
as an indication of the closeness of the system to a tricritical point, the behaviour of the 
order parameter being explained in terms of extended Landau free energies with sixth- 
order terms of magnitude comparable with the small fourth-order term, while keeping the 
Landau approximations for the temperature dependences of the coefficients in the Landau 
polynomial (all coefficients are constant, except the linear dependence of the quadratic 
coefficient) [5]. In both cases, the power laws observed cannot be considered as critical 
phenomena; they extend up to temperature quite outside any possible critical region and are 
observed using a coarse temperature scale. The main questions are then as follows. Why in 
many systems does the Landau approximation seem to work so well in temperature intervals 
so unexpectedly large? Is there any fundamental explanation for the fact that so many real 
systems seem to have their phase transition close to a tricritical point? Do they exist for 
the behaviour of systems exhibiting s ~ c t ~ r a l  phase transitions when considered in large 
temperature intervals general laws that are beyond the usual Landau approximation? Is the 
commonly accepted extension of Landau theory made by including additional higher-order 
terms in the Landau polynomial with temperature-independent coefficients justified? 

In order to clarify these points, Giddy er al [1,4] recently investigated the Landau free 
energy of the microscopic Q4 model. This model essentially consists of a lattice of local 
continuous variables under the influence of local double wells and harmonic couplings with 
the neighbouring sites. It is commonly considered as a prototypical microscopic classical 
model containing the essential physics involved in structural phase transitions, where the 
local order parameter is a continuous variable instead of being a discrete spin. It has been 
widely used in the microscopic description of structural phase transitions and, in particular, 
ferroelectrics. According to [1,4], the model exhibits wide temperature-range power laws 
for the order parameter with non-classical exponent values, ranging from 0.5 to 0.15 as 
the model parameters were varied from the displacive to the order-disorder limit. Using 
analytical approximations and molecular dynamics for the Q" model, it was reported that the 
Landau free energy of the system is poorly described by the usual polynomials restricted up 
to fourth- or sixth-order terms. If such a description was forced, the fourth-order coefficient 
was strongly temperature (and order parameter) dependent and especially small in the case 
of model parameters approaching the order-disorder limit. The results suggested that some 
of the regularities observed in real systems mentioned above are beyond Landau predictions 
and are strongly correlated with the displacivelorder-disorder degree of the microscopic 
mechanism of the transition. 

In this paper, we present a direct Monte Carlo determination of the Landau free energy of 
the three-dimensional Q4 model, with parameters ranging from typical displacive parameters 
to those close to a pure order-disorder mechanism. The method is straightforward; it uses 
the formal statistical definition of the Landau free energy as an incomplete thermodynamic 
potential. Hence, no approximation is introduced in the calculation except for that inherent 
to the numerical method employed. The function obtained has been fitted to the usual power 
expansion. Direct unambiguous evidence for some of the points claimed in the references 
above has been obtained. In addition, very peculiar wide temperature-range behaviours of 
the Landau free-energy polynomial coefficients that are strongly dependent on the order- 
disorder degree of the model have been ascertained. 

2. Method and results 

The Landau free energy FL( Q), independently of its eventual functional form, can be defined 
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as an 'incomplete' thermodynamic potential where the order parameter is restricted to have 
an arbitrary value Q. Hence, in statistical terms, the Landau free energy can be expressed 
as [6,71 

F d Q )  = -W"ln[z(Q)I (1) 

where Z ( Q )  is an incomplete partition function where all degrees of freedom have been 
integrated except that corresponding to the order parameter, which is fixed to the value Q. 
Thus, the total partition function of the system is obtained by integrating Z ( Q ) .  On the 
other hand, the thermal probability distribution of Q is related to  the^ incomplete partition 
function: 

From (1) and (Z), it is then obvious that 

AF, = FL(Q)  -. F = - ~ B T  In[P(Q)l (3) 

where F = -kaTInZ is the equilibrium free energy of the system. Hence, as F is Q 
independent, the Q-dependent part of the Landau free energy can be derived from the 
probability distribution of Q, and this latter is directly accessible from a standard Monte 
Carlo calculation. 

Despite its radical simplicity, this way of looking at the probability distribution of the 
order parameter has been seldom considered when studying phase transitions. We are only 
aware of an application to a discotic liquid crystal [R, 91 and, to our knowledge, it has not 
been used in the analysis of the Q4 model. Certain numerical studies in the context of 
renormalization group theory have used similar expressions when deriving 'coarse-grained 
Hamiltonians' corresponding to the Kadanoff transformation [lC-IZ] but their relevance in 
the framework of the Landau theory was not considered and they did not include large- 
cell calculations. Conversely, the direct relation of the Landau free energy with statistical 
magnitudes as expressed by (3) is usually overseen in phenomenological analyses based on 
Landau theory. 

The Hamiltonian of the G4 model can be expressed in the form [I31 

N N  

H = V ( X j )  + ; )-CC(Xj - x i y  
i j  

(4) 

with the on-site potential V ( x i )  given by 

(5) 2 2  V ( X i )  = Eo(x, - 1) . 

Eo represents the energy barrier between the two local wells for the site variablex. We only 
consider the next-nearest-neighbour interaction given by the coupling constant C. The units 
of the local variable x are normalized so that i l  corresponds to the minima of the on-site 
potential. The order parameter is defined as Q = ( l / N )  x i x i ,  where N is the number of 
cells in the lattice. Q can be interpreted as a collective degree of freedom associated with the 
homogeneous component of the Fourier spectrum of the x configurations. For any parameter 
values EO, C > 0, there exists a phase transition temperature below which ( Q )  # 0. Only 
one parameter is numerically relevant, the other being fixed by the chosen energy~units. 
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Indeed, the ratio C/Eo can be taken as a single model parameter, or equivalently energy units 
can be chosen so that EO = 1. The limits C/Eo + w and C/Eo + 0 can be considered to 
represent the ideal pure displacive and pure order-disorder mechanisms, respectively [13]. 
When both energies are of the same order of magnitude, we are in a typical intermediate 
case. According to mean-field theory, the transition is directly proportional to the elastic 
parameter: keTc = 4C and 12C in the displacive and order-disorder limits, respectively. 
More exact relations have been obtained for the two limits 113,141: 

displacive limit keTC =~2.6C 

order-disorder limit ~ B T ,  = 9.1C, 

The thermal probability distribution P ( Q )  at different temperatures was obtained using 
the Metropolis algorithm [15] in a supercell 10 x 10 x IO, using 2 x IO7 Monte Carlo steps 
after a previous thermalization process of 5 x lo5 steps. As the probability distribution 
should be symmetrical with respect to Q = 0, the final set of configurations was doubled 
by associating each configuration having a certain value Q for the order parameter, with 
both +Q and -Q. Then, the per-site 'Landau function' f~ in Eo energy units, defined as 
~ L ( Q )  = ( I / N E o )  AFL(Q) ,  was calculated by applying equation (3). Figure 1 shows apair  
of examples, above and below the phase transition temperature, of the resulting distribution 
P ( Q )  for the case C/Eo = 1 and the corresponding ~ L ( Q ) .  In figure 2, the form obtained 
for fL(Q) at several temperatures is depicted for the same C/Eo-value. In the figure, one 
can nicely see the qualitative behaviour predicted by the Landau theory for the temperature 
variation of the Landau free energy. 
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- .  . -  
. . I . ,  0.00 ' I.- ''2 " I '  ' " 
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Figure 1. (0) Probability dislribution of the order parameter Q and (b) corresponding Landau 
free energy per site according to (3)  for ksT = 4Eu (0) and 39Eo (A) in the case CIEu = I :  
( b )  resulting fits with a polynomial up to founh-order tam. 
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Figure 2. Monte Carlo Landau free energy h for CJEo = I for several temperatures, above 
and below the transition point. The functions have been arbitrarily translated along the vertical 
axis so that they all coincide at the origin. 

The functions fL(Q) were fitted to the usual polynomial form 

fL(T.12)- f o f A Q 2 + B Q 4 + . . .  . (7) 

The fitting was done with a weighting scheme that took into account the increasing statistical 
error of the points for large fL-values. This proved to be essential for obtaining consistent 
results. Figure l(b) shows some of these fits. Except for points very close to the transition 
temperature (see figures 3 and 4) where sixth-order terms were necessary, the function 
was in general well represented by a polynomial up to the fourth order. However, both the 
coefficient A and the coefficient B were in general temperature dependent. Their values as a 
function of the reduced temperature are depicted in figures 3 and 4, respectively, for all cases 
investigated (C/Eo = 0.1. 1, 10). Well above the phase transition, the form of the function 
fL becomes essentially parabolic and could be well described by the form (7) truncated at 
the quadratic term. At these temperatures it was senseless determining the coefficient B .  
This, however, should not be taken as an indication that B hecomes zero; instead, it is 
related to the fact that, as the system moves away at high temperatures from the phase 
transition region, the hardening of the coefficient A makes the Landau free energy stiffer 
and a smaller range of Q-values is visited in the Monte Carlo runs (figure 5); the fL(Q) 
obtained is then limited to a Q-range where the effect of the B-term becomes negligible. 
Similarly, far below the phase transition, the statistics to determine the wings of the Landau 
function become very poor, as only a small parabolic region in the proximity of the deep 
minima is considered in the simulation. The truncation of the polynomial (7) up to fourth 
order was clearly a poorer approximation for the case C/Eo  = 0.1 where the inclusion of 
sixth-order terms was necessary in a larger region (in reduced temperature) around Tc, and 
even an eighth-order term seems to be present close to Tc. 
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Figure 3. Tempenture dependcnce of the quadratic Figure 4. Temperature dependence of the quartic 
Landau coefficient ( A  in equation (7)) for the three Lmdau coefficient ( B  in equation.(7)) for the three 
cases studied 0. C / F t  = 0.1; A. C/&! = I: cases studied, The symbols me the same as in 
x, C/&i = 10. figure 3. The points which required the inclusion 

of a sixth- and an eighth-order term in the fitted 
polynomid x e  indicated by an additional circle and 
square, respectively. 

The size of the supercell used had to be a compromise between the necessity of a small 
sample to make statistical fluctuations sufficiently probable and sufficiently large to minimize 
finite-size effects. By observing the convergence of the values obtained for A and B for 
different supercell sizes, we could estimate that their errors in the 10 x 10 x 10 calculation 
were less than 0.05. The transition temperatures obtained were kBTc/Eo = 0.589,3.52 and 
29.7 for C / E o  = 0.1, 1 and 10, respectively. Their difference from the values predicted 
(see equation (6)) for the displacive and orderdisorder limits indicates more the deviation 
of the system from these limits rather than a finitc-size effect: similar coarse simulations 
done €or CjEo = 0.01 and 100 yielded transition temperatures kBT,/Eo of 0.098 and 276, 
respectively, in accordance with the two limiting expressions in (6). Obviously, finite-size 
effects can be very important very close to the phase transition where large-scale fluctuations 
take place, but we should stress that this region, which is small on the temperature scale 
considered in figures 3 and 4 [5], is outside the scope of the present study. The relative 
small size of the supercell was also favourable to avoiding, in the Monte Carlo sampling, the 
presence of configurations where the coexistence of 'macroscopic' domains having opposite 
values of the order parameter could spoil the calculated probability distribution which, by 
definition, should correspond to a single domain. 

3. Discussion 

According to its definition (1). as T goes to zero, the Landau free energy per cell for 
a certain value of Q must become equal to the mechanical energy of the configuration 
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Figure 5. Temperature variation of the range af the order parameter considered in the Metropolis 
runs in the three cases studied. At each temperature, the relevant interval is indicated with B 
full line. 

of minimal energy within the set of those having this Q-value. As stressed above, the 
Landau free energy is a thermodynamic function associated with the bulk material as a 
single-domain, i.e. surface or interphase (domain walls) energetics are not considered, and, 
for systems presenting several macroscopic or pseudo-macroscopic domains with different 
Q-values, a Landau function can be associated, separately, with the bulk of each domain. 
Therefore, disregarding polydomain configurations, the configuration of lowest energy, for 
a fixed value of Q. is the homogeneous configuration with xi = Q for all i, which has 
no energy contribution from the elastic term in (4). Accordingly, as T goes to zero, the 
Landau free energy per cell must approach the local potential V ( x ) ,  while the ,free energy 
F becomes equal to the minimum of V ( x )  (zero in our case). ,Consequently, considering 
(5) and (7), we should expect that fo(0) = 1, A(0) = -2 and B(0) = 1 (in EO units). 
The temperature dependence of the coefficients in figures 3 and 4 is in accordance with this 
expected low-temperature limit, which differs from that assumed in [l]. 

According to figure 4, the temperature variation in the coefficient B strongly depends on 
the model parameters. In all cases it has a minimum close to the transition temperature, but 
this minimum becomes much deeper for systems approaching the order-disorder limit. The 
existence of a minimum in B(T) at the transition point represents a surprising additional 
support of the hypothesis in the Landau theory of a constant B in a region close to the 
transition point. This approximation is usually justified as a zeroth-order approximation 
for a function which is expected to be weakly temperature dependent [SI. However, the 
coefficient B exhibits in general a strong temperature dependence when compared with 
A(T) .  It is the presence of the minimum that justifies a constant B approximation in the 
neighbourhood of the transition. The tendency of B to have small values at the transition 
point would explain the frequent observation of systems close to tricritical behaviour, which 



should be related to the order-disorder character of the microscopic mechanism involved in 
the transition. The quite discontinuous behaviour of the coefficient B at points around its 
minimum is probably due to uncertainties because of the fitting problems mentioned above. 
On decreasing the temperature, the largest discontinuity typicaIly happens at the temperature 
where the origin of Q becomes unaccessible in the Monte Carlo simuIations, and the fit is 
reduced to polynomials up to fourth-order terms. 

Independently of the system parameters, according to figure 3, the variation in A ( T )  
with temperature is approximately linear in large temperature intervals, above and below 
the phase transition. However, the slope of this linear relation chauges around the transition 
temperature; this change tends to zero in the displacive limit and increases for systems 
approaching the order-disorder limit. In the case closer to the order-diorder limit, the 
change in slope is centred at a temperature somehow lower than T,. It can be clearly seen 
in the figures that, obviously, when one limits the observation to a small temperature interval 
around the phase transition where the coefficient B can be considered to be approximately 
constant, a constant linear variation in A ( T )  common to temperatures above and below the 
transition is a good approximation. This ‘Landau interval’, where the Landau hypothesis 
for the polynomial coefficients is valid, would extend in the displacive limit to the whole 
temperature range of the distorted phase and decreases rapidly for systems approaching the 
order-disorder regime, as expected from general arguments [7]. The important point is that 
even outside this interval the temperature variation in the coefficient A is also approximately 
linear. This means, for instance, that the order parameter susceptibility when considered in 
large temperature intervals should follow a Curie law, but the well known Landau-theory- 
predicted 0.5 slope ratio for the inverse of the susceptibility above and below the transition 
is substituted by a smaller ratio, as the system becomes closer to the order-disorder limit. 

In the Landau approximation, the thermal equilibrium value of the order parameter can 
be identified with that minimizing the Landau free energy [6]. The temperature dependence 
in the distorted phase of this spontaneous equilibrium order parameter for the three cases 
investigated is shown in figure 6. For the cases C/Eo = 10 and 1, their temperature 
variation could be fitted to a power law IT - TIh in the whole temperature range of the 
low-temperature phase with b = 0.47 and 0.33, respectively (we use b to avoid confusion 
with the critical index B ) .  In the case~closer to the order-disorder limit, however, a fit in the 
whole range was not possible and a fit limited to an interval around the transition yielded 
a value b = 0.26. In accordance with Giddy et al [1,4], the exponent b, starting from 
O S ,  decreases as the system deviates from the displacive limit. Values of the order of 0.3 
are obtained for CIEo-values of the order of unity. However, the observed deviation from 
the Landau prediction for a polynomial truncated up to fourth order cannot be considered 
to be the result of the relevance of a constant sixth-order term, as usually assumed [7], 
but is essentially a consequence of the important temperature variation of the fourth-order 
coefficient. In the case closer to the order-disorder limit (C/& = 0.1) the function Q(T)  
is nearly step like near the phase transition, indicating the very small value of B and its 
tendency to become a first-order transition. 

Within the Landau approximation, the free-energy difference between the distorted and 
the non-distorted phase at each temperature is given by FL(Qo) - FL(O), where Qo is the 
order parameter value at the Landau free-energy minimum. In figure 7, the temperature 
variation in this quantity (per cell) is shown. In contcast with the important differences for 
other quantities discussed above. the behaviour of this free-energy difference is very similar 
in the three cases investigated. The accuracy of the method is, however, not sufficient 
to analyse differences in the first and second derivatives corresponding to the transition 
entropies and specific heats. 
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Figure 7. Temperature variation of the per-site free- 
energy difference between the distorted and the non- 
distorted phase calculated~as indicated in the text. The 
symbols are the same as in figure 3. 

4. Concluding remarks 

It should be stressed that the simple Monte Carlo method employed explores only a small 
range of Q-values around the equilibrium value, and therefore at each temperature only a 
small portion of the Landau free energy is accessible. In general, the fitted polynomials 
only represent with confidence the Landau potential in the Q-interval visited by the Monte 
Carlo method. This is not critical at temperatures around the phase transition where the 
large fluctuations in Q make the Landau function observable in a wide interval around 
Q = 0 (see figure 5) .  At lower temperatures, however, the minima of the function are so 
pronounced that only values of the function around these off-centre values are obtained and 
the polynomial fit becomes ambiguous. Typically, the region accessible in these cases is 
limited to a parabolic region around the minimum; the function is then fully determined 
by the position of these minima and their curvature, and it can always be represented by a 
polynomial truncated up to fourth order; lacking additional information, any fit with higher- 
order terms would have no meaning. However, there is no guarantee that the polynomial 
so obtained is valid around the origin, or in other Q-intervals not considered. We checked 
this fact by performing Monte Carlo calculations analogous to those above, but with an 
applied external field E conjugate to the order parameter. According to its definition, the 
only change in the Landau free energy is the addition of a term -QE and a change in 
fo. However, both coefficients A and B of the fitted polynomial suffered a significant 
variation, while keeping the general qualitative behaviour with temperature. This must be 
related to the important variation in the interval of Q that is examined when the field is 
applied. One can then state that A and B are Q dependent [ I ] ,  and the values reported above 
refer only to the Q-interval around the equilibrium value. Alternatively, one could describe 
the situation by means of Landau expansions with Q-independent coefficients including 
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sixth- and higher-order terms, but then the values of the coefficients cannot be determined 
from the samplings obtained. In any case, a description in terms of Q-dependent Landau 
coefficients is probably more adequate when dealing with large values of Q. In this respect, 
it is interesting to see, for instance, the analytical limit of the Landau free energy for large 
Q-values at any temperature. In terms of Fourier components, the energy (4) can he written 
in the form [13] 

where the sums are limited to non-zero k-values and A(k) is unity for k a reciprocal- 
lattice vector and zero otherwise. In the limit of large Q we can neglect quartic, cubic and 
quadratic terms in the Fourier components except the term proportional to Qz, and we can 
approximate the Landau free energy by 

which yields 

When the physically relevant Q-values are restricted by a certain field to a small interval 
around a non-zero value Qo, the logarithm in (10) can be expanded and the function 
(10) can be well represented by a polynomial of type (7) restricted up to fourth order, 
with A = -2 + 2 k ~ T l Q i  and B = 1 - k~T12Q:. Hence, as could be expected, at 
any temperature, the wings of the Landau free energy coincide with those of the local 
potential function V ( x )  at sufficiently high values of the order parameter, irrespective of 
the polynomial form valid for values of Q close to zero. Although quite academic, because 
of the physical irrelevance of the function at such high values of the order parameter, this 
limit evidences the drawbacks of an extension of the Landau expansion to higher-order 
terms for describing the Landau free energy in regions far apart from the origin. 

In practical terms and translated into real systems, the observed Q-dependence of the 
Landau coefficients implies that their experimental values can depend on the Q-interval 
visited by the system during the experiment and, therefore, are in general not ‘transportable’. 

The final question is what can be taken as model independent in the results above. 
Obviously, the zero-temperature limits of the coefficients A and B depend on the model on- 
site potential and they should have an important influence in their temperature behaviour far 
below the transition temperature. However. some of the trends observed in their temperature 
behaviour are probably general. In [9] ,  for instance, where a discotic liquid crystal was 
simulated, the very small value obtained for the fourth-order coefficient was also stressed. 
Hence, we conjecture that the minimum observed in the fourth-order coefficient is a quite 
general property, and the same may happen with the change in slope observed for the 
quadratic coefficient. Similar investigations in different microscopic models are necessary 
for obtaining a final answer. Also, more complex Monte Carlo techniques such as umbrella 
sampling should be.used to obtain information on more extended intervals of the order 
parameter space, so that the ‘Q-dependence’ of the Landau coefficients can be investigated. 

What becomes clear is that one should refrain from extending Landau potentials by 
including higher-order terms with temperatureconstant coefficients, when correcting the 
simplest Landau behaviour for temperature intervals far from the transition point. 
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